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Dépt. Informatique, École des Mines de Nantes

4 rue Alfred Kastler, 44307 Nantes cédex 3, France
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Abstract. Software patterns have evolved into a commonly used means
to design and implement software systems. Programming patterns, ar-
chitecture and design patterns have been quite successful in the context
of sequential as well as (massively) parallel applications but much less so
in the context of distributed applications over irregular communication
topologies and heterogeneous synchronization requirements.
In this paper, we propose a solution for one of the main issues in this
context: the need to complement distributed patterns with access to ex-
ecution state on which it depends but that is frequently not directly
available at the sites where the patterns are to be applied. To this end
we introduce invasive patterns that couple well-known computation and
communication patterns like pipelining and farming out computations
with facilities to access non-local state. We present the following con-
tributions: (i) a motivation for such invasive patterns in the context of
a real-world application: the JBoss Cache framework for transactional
replicated caching, (ii) a proposal of language support for such invasive
patterns, (iii) a prototypical implementation of this pattern language us-
ing AWED, an aspect language for distributed programming, and (iv)
an evaluation of our proposal for refactoring of JBoss Cache.

1 Introduction

Software patterns have proven a versatile tool for program development, be it for
the development of application designs [15], architecture descriptions [24] or pro-
gram implementations [14]. Design patterns have been very successful in the do-
main of sequential, in particular object-oriented applications. Similarly, pattern-
based development methods have been extensively applied in the parallel domain
for the derivation and implementation of massively parallel algorithms [24, 21, 9].
However, pattern-based approaches have been much less successful in the domain
of distributed programming, in particular, if they are defined over irregular com-
munication topologies and subject to heterogeneous synchronization constraints.
Consequently, patterns for distributed programming (see, for instance, patterns
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for distributed enterprise information systems and grid applications [20, 10, 14])
are often expressed as mere programming recipes that are not backed up by
concrete architecture or implementation entities that can be used and reused as
building blocks for applications.

In this paper we investigate a major reason for the difficulty in applying
programming patterns, that embody common computation and communication
patterns, to distributed applications: frequently, applications of such patterns
in realistic contexts depend on information on the execution state that is not
directly available when the pattern is to be applied. This is, for instance, the
case in two frequent cases: (i) in legacy contexts where patterns could be used
to improve the application structure but in which instructions for communi-
cation instructions and manipulation of related execution state are frequently
scattered over numerous places and (ii) distributed applications that have been
designed using less flexible abstractions than provided by communication and
computation patterns.

In this paper we introduce invasive patterns for distributed programming.
Such patterns essentially provide well-known regular computation and commu-
nication patterns but provide a built-in abstraction for access to non-local exe-
cution state whose access is required to enable pattern applications. We provide
evidence that techniques from Aspect-Oriented Programming (AOP) [1] can be
harnessed to augment patterns by structure access to such non-local state.

Concretely we present the following contributions. First, we present a de-
tailed motivation for invasive patterns and corresponding aspect-oriented sup-
port based on a detailed analysis of the use of patterns in a real-world distributed
application: the JBoss Cache strategy for replication in the context of trans-
actions. Second, we introduce a pattern language that allows to concisely de-
fine invasive variants of well-known patterns for distributed applications. Third,
we briefly sketch a prototypical implementation of invasive patterns using the
AWED system for explicit distributed aspect-oriented programming. Fourth, we
give an evaluation of our approach by discussion how invasive patterns can be
used to improve the structure of JBoss Cache.

The paper is structured as follows. In Sec. 2, we introduce the notion of inva-
sive patterns and motivate it in a real-world application. Our pattern language
is introduced in Section 3. In Sec. 4, we describe our prototypical implementa-
tion of this pattern language using AWED. Sec. 5 presents the evaluation of our
approach. Related work is discussed in Sec. 6. Finally, Sec. 7 gives a conclusion
and discusses future work.

2 Motivation

In this section we first present modularization problems of pattern-like compu-
tations in JBoss Cache [17], a large-scale real-world framework for transactional
replicated caching. We then introduce the notion of invasive patterns that we
propose as a means to resolve such modularization problems.



2.1 Pattern-like structures in JBoss Cache

We have analyzed the occurrences of pattern-like computation structures and the
dependencies of such pattern-like structures on the underlying execution state in
JBoss Cache, an open source implementation of a replicated transactional cache
over an J2EE-based communication infrastructure. In the following we briefly
describe the JBoss Cache framework and the results of our analysis of software
patterns that are used implicitly in this infrastructure.

JBoss Cache is a large object-oriented framework implemented in Java that
consists of more than 50 thousand lines of code. Basically the JBoss Cache
implementation consists of two main parts: (i) a main class TreeCache that
represents the main data structure, a tree with a hash table on each leaf, that is
replicated on each node (host) in the cache cluster and (ii) a set of filters that is
used to implement the major part of the behavior of non-functional requirements,
mainly transactions and data replication. An interception mechanism is used to
transfer control between the classes implementing the data structure and the
filters. Concretely, each call to the TreeCache API is first transformed into a
method call object using a reflection mechanism. Once this object is created, it
is passed to a chain of filters where each filter adds some behavior, e.g., optimistic
locking is added by the transaction filter. Eventually, the filtered method call is
performed.

The current production version (1.4) of JBoss Cache conceptually uses an
architecture that can be expressed nicely in terms of patterns using, e.g., a
pipeline pattern for transaction control and a farm pattern for replication actions
(Here and in the rest of the paper we assume the cache to be configured for
transactions with pessimistic locking and a two phase commit protocol). Figure 1
presents a high-level pattern-based view of the corresponding system structure
of JBoss Cache. In the figure, a transaction is triggered by a specific method
call represented by the first node in the pattern. Then successive calls to get,
remove or put methods on the cache are executed and the information is stored
for further replication. When a particular value is not present in the cache, the
cache looks for the value in a group of selected neighboring nodes, its so-called
buddies, illustrated by the three edges starting in the second node of the figure.
Once the end of a transaction is reached, the originating cache engages a two
phase commit protocol. In such a protocol the originating cache sends a prepare
message with the transaction control information (edges numbered 1 in the right
part of the figure), followed by answers from all buddies confirming agreement
or non agreement (edges numbered 2). Finally, the originating cache sends a
final commit or a rollback message depending on the answers it received (edges
numbered 3). Note that in this interaction we can identify, at least, two well
separated groups of hosts, one for the search of values at buddy nodes and the
other for the replication behavior from a node to other nodes.

In previous work [6] we have analyzed the complexity of the code struc-
ture of the (non-pattern based) implementation of the JBoss Cache framework:
we have shown that replication and transaction instructions are, in particular,
widely scattered over the code base and tangled with one another in numerous



Fig. 1. Architecture of transaction handling with replication in JBoss Cache

places.⋆ Even though JBoss Cache conceptually is characterized by a pattern-
based structure as shown in Fig. 1, the current implementation does not allow
conventional patterns for distributed systems to be applied due to the scattering
and tangling of code these functionalities are subject to. The TreeCache class
consists of 3802 lines of code (LOC), of which more than 280 LOC are relevant
for transactions. The interceptor package exhibits similar quantitative charac-
teristics: the package consists of 5099 LOC and more than 137 LOC are related
to transactional behavior and are not included in the dedicated transaction in-
terceptor. A detailed qualitative analysis of such code leads to the identification
of three basic problems:

1. Transactional and replication behavior depends on state that is stored in
different classes. Such state is modified in scattered pieces code that, e.g.,
reify the current transactional state as mentioned above so that it can later
be tested in another class in order to decide which replication action to
perform.

2. The relationships governing the interplay between the main concerns, trans-
actions and replication, are not made explicit anywhere in the code. Instead,
scattered pieces of code implicitly coordinate these concerns, thus generating
tangled code and breaking the modularization aimed at by the JBoss Cache
filter mechanisms.

3. JBoss cache includes several distribution-related concerns (e.g., replication,
cache loaders and buddy lookup) that require communication between dif-
ferent groups of hosts. Group overlapping and interactions between different
groups generate additional tangling.

2.2 Source code representation of pattern-like structures

These problems are clearly apparent in the source code of JBoss Cache. In ab-
stract terms, a cache behaves as follows. A chain of interceptors for the support

⋆ This analysis has been conducted on JBoss Cache version 1.2 but remains valid for
the current production version 1.4 as shown in [23].



of transactional and replication behavior is created when the cache is initialized.
When a transaction-related action occurs, a method-call object of a correspond-
ing type is created using the JAVA reflection framework, which is then passed
through the chain of interceptors. A ”get” request, for example, may be processed
by filter to check its buddies if a specific data is in their cache, by the transactions
interceptor to control transactional behavior, and by the locking interceptor to
lock the tree cache data structure accordingly. The so-called replication inter-
ceptor, finally, performs (most of) the two-phase commit protocol among caches
by first sending a prepare message, followed by a rollback or commit message
depending on the result of the prepare phase. This code architecture is problem-
atic because the manipulation of state that is relevant for replication operations
as well as the protocols governing transactional and replication behavior is de-
termined by scattered pieces of code whose joint effects during execution, i.e.,
the correct implementation of transactional behavior and replication, are very
difficult to apprehend from the code structure.

Figure 2 shows a piece of code of the main filter method invoke of the
DataGravitationInterceptor class that is responsible for the so-called data
gravitation concern, i.e., buddy lookup. This method clearly exhibits the prob-
lems stated above, providing evidence of tangling of three concerns: replication,
transactions and buddy lookup. The code uses a common idiom to address trans-
actions control inside a switch instruction (lines 7 to 21). The right branch in
the switch statement is taken depending on static information on the execution
state, e.g., a configuration-time choice between optimistic and pessimistic lock-
ing, and dynamic information about the execution state, e.g., the dynamic type
of the current processed method call. There, in order to calculate the method id
(see line 5) the application relies on an ad-hoc mapping that is defined in the
class MethodDeclarations. Similarly, the choice between optimistic and pes-
simistic locking is made at configuration time inside the TreeCache class as well
as part of the class InterceptorChainFactory (this choice in turn affects at
runtime the configuration of the dynamically created chain of filters).

Note that the corresponding piece of code is found inside the filter class
DataGravitation and uses data that is calculated in many different places,
thus expliciting the problem 1 above. The kind of idiom involving switch state-
ments (that clearly represent a mismatch between the conceptual pattern-based
architecture and its concrete implementation) is scattered over multiple places
in the implementation. We have found 93 places where such a switch action is
used and more than 29 places where it occurs in the context of replication oper-
ations implying a one to many communication between caches (thus providing
testimony for the problems 1 and 2 introduced above).

Furthermore, the DataGravitation class plays an unexpected role in the
two phase commit protocol. A method of type commitMethod is processed in
order to send a commit message on those caches that are not part of the current
buddy group, see line 37 in the docommit method (i.e., being subject to problem
3 above). Remember that the DataGravitation class was supposed not to con-



trol the transactional behavior or the replication of transactions which, should
normally, be performed by the transactions and replication filters.

2.3 Invasive patterns in a nutshell

Dependencies as those motivated above for JBoss Cache between transaction-
related actions and replication operations cannot simply be modularized using
standard patterns for workflow-related computations, such as pipelining, farm-
ing out or gathering computations as illustrated in Fig. 3, where circles denote
calculations that possibly take place on different hosts and edges denote commu-
nication. In fact, taking scattering and tangling of transactions and replication
into account requires does not fit the common interpretation of such patterns in
which each circle denotes a well-defined entity, in our motivating example some
nicely modularized piece of code within JBoss Cache.

In such cases effective support for a pattern-based programming style should
allow the definition of patterns to include accesses to the data it depends on but
that is defined at other places in the underlying distributed program and allow
such patterns to be applied possibly at numerous places in a program. Because
crosscutting of non-local execution state that enables such pattern applications
is at the heart of such effective support, Aspect-Oriented Programming [18, 1]
seems a promising approach for the modularization of patterns and the corre-
sponding data accesses.

We pursue this idea in this paper on the programming level by extending
patterns with a notion of aspects to modularize such crosscutting accesses. The
resulting notion of invasive patterns is illustrated in Fig. 4 for the case of a
gather pattern. On the three nodes on the left hand side, different pointcuts
(represented by dashed lines) are used to access information that is then prepared
by “source” advice (represented by the filled rectangles) to be sent to the right
hand side node. Once all relevant data has been passed to the right hand side
node, a “target” advice is used to integrate the transmitted data with an existing
or new computation on the target node. In order to support the declarative
definition of such crosscutting accesses, we leverage results on so-called stateful
pointcut languages [13] that enable matching of sequences of execution events
to be defined using expressive languages, in particular finite-state automata.

Besides a definition of basic invasive patterns a suitable notion of pattern
composition is needed. Reconsider the (abstract) architecture of transaction han-
dling with replication in JBoss Cache, see Fig. 1: this architecture can naturally
be expressed in terms of compositions of the three basic patterns introduced
above, where the steps denoted 1–3 in the figure correspond, for instance, to two
applications of the farm pattern and one application of the gather pattern. Our
approach supports the compositional construction of such architectures from the
basic patterns on the programming and the implementation level. As discussed
in Sec. 2.1, this architecture is essentially hidden in the actual JBoss implemen-
tation. Our approach can therefore be seen as a means to make explicit such
architectures, and thus help program understanding and maintainability.



1 //----- Piece of code in the invoke method of
2 //----- DataGravitationClass
3 try
4 {
5 swith (m.getMethodId())
6 {
7 ase MethodDeclarations.prepareMethod_id:
8 ase MethodDeclarations.optimisticPrepareMethod_id:
9 Object o = super.invoke(m);

10 doPrepare(getInvocationContext().getGlobalTransaction());
11 return o;
12 ase MethodDeclarations.rollbackMethod_id:
13 transactionMods.remove(
14 getInvocationContext().getGlobalTransaction());
15 return super.invoke(m);
16 ase MethodDeclarations.commitMethod_id:
17 doCommit(getInvocationContext().getGlobalTransaction());
18 transactionMods.remove(
19 getInvocationContext().getGlobalTransaction());
20 return super.invoke(m);
21 }
22 }
23 ath (Throwable throwable)
24 {
25 transactionMods.remove(
26 getInvocationContext().getGlobalTransaction());
27 throw throwable;
28 }
29

30 //---- The docommit method in DataGravitation class
31 private void doCommit(GlobalTransaction gtx) throws Throwable
32 {
33 if (transactionMods.containsKey(gtx))
34 {
35 if (log.isTraceEnabled())
36 log.trace("Broadcasting commit for gtx " + gtx);
37 replicateCall(getMembersOutsideBuddyGroup(),
38 MethodCallFactory.create(
39 MethodDeclarations.commitMethod,
40 new Object[]{gtx}),
41 syncCommunications);
42 }
43 else
44 {
45 if (log.isTraceEnabled())
46 log.trace(
47 "Nothing to broadcast in commit phase for gtx " + gtx);
48 }
49 }

Fig. 2. Tangled code of a two phase commit (2PC) protocol inside the invoke method
of the DataGravitationInterceptor class.

Fig. 3. Basic patterns



Fig. 4. Invasive patterns

3 Pattern language

A crucial issue concerning invasive patterns as motivated before is how the differ-
ent activities (pointcut matching, local and remote advice) are synchronized with
one another. In this section, we first discuss corresponding design choices and
then present our language for the definition of invasive architectural patterns.

3.1 Design choices

The definition of distributed algorithms using patterns over a state-based pro-
gramming paradigm essentially depends on the correct synchronization on the
different parts of invasive patterns and between different invasive patterns. Pat-
tern-based computations can be synchronized roughly at three different levels:

1. Synchronization within an invasive pattern. Most basically, target advice is
executed only after a rendez-vous synchronization of all source computations.
In the case of the gather-pattern shown in Fig. 4, the target computation
is started only after the three target hosts have “agreed” to trigger it.
Second, target advice may be executed in a synchronous or asynchronous
fashion. Synchronous execution of parts of the pipe pattern of Fig. 3a cor-
responds to a fully sequential (a.k.a. batch) computation, while its asyn-
chronous execution corresponds to a pipelined computation. We support
both behaviors.

2. Computations involving consecutive executions of patterns may be synchro-
nized with one another. The gather pattern may, for instance, be synchro-
nized with the execution of the following pattern that is represented in the
right hand side node by the pointcut (the dotted lines), the source advice



(the small rectangle) and the arrow leaving the node to the right. Execution
of a follow pattern on a node n must obviously start after control of the pre-
vious pattern has entered n (otherwise the two pattern executions could not
be said to be consecutive) but may be reasonably started either when the
target advice of the previous pattern is started or when it terminates. In this
paper we only consider the synchronous case, i.e., execution of follow pat-
terns start when the target advice finishes. Our prototype implementation
already supports both options, though.

3. Most generally, synchronization constraints may be imposed on arbitrary

segments of pattern compositions. Such general constraints are interesting,
e.g., because computations may be executed on the same host and therefore
give rise to problems, such as race conditions. Such synchronization strate-
gies cannot, however, be defined simply in terms of individual patterns as
considered here.

Summarizing, we provide in this paper explicit support for intra-pattern syn-
chronization and synchronization between consecutive pattern executions. We do
not, however, provide general synchronization strategies over pattern composi-
tions because they are difficult to comprehend and may easily lead to perfor-
mance bottlenecks or even deadlocks. We envision that specific properties over
pattern compositions can be analyzed and enforced in terms of the more re-
stricted means for synchronization we introduce here. This issue is, however,
beyond the scope of the present paper.

3.2 Syntax and informal semantics

P ::= patternSeq G1 A1 G2 A2 . . .Gn

G ::= H G | P G | ǫ

A ::= aspect { around((H , Id*)*): PCD SourceAdvice [sync] TargetAdvice }
PCD ::= call(MSig) | target(Id) | args(Id+)

| PCD && PCD | PCD || PCD | !PCD
| Seq

Fig. 5. Pattern language

We are now ready to introduce the pattern language we have designed that
realizes the above design choices. Figure 5 shows the syntax of our pattern lan-
guage (we have omitted details for the sake of simplicity).

The pattern constructor patternSeq takes as argument a list G1 A1 G2 A2

. . . Gn of alternating group and aspect definitions. Each triple Gi Ai Gi+1 in
this list corresponds to a pattern application that uses the aspect Ai to trigger
the pattern in a source group Gi and realize effects in the set of target hosts
Gi+1. A group G is either defined as a set of host identifiers H or through
a pattern constructor term itself. In the latter case, the group is defined as



the source or target group of the constructor term depending on the argument
position the term is used in. This constructor enables to define the basic patterns
shown in Fig. 3: pipe as a patternSeq from a single host to another, farm as
a patternSeq from a single host to several hosts and gather as a patternSeq

from several hosts to a single one. Pattern compositions can be defined with more
complex patternSeq terms. For instance, the left hand side of Figure 6 defines a
composition pipe then farm, and its right hand side defines a composition pipe,
farm then gather. These examples make clear it is easy to define sophisticated
compositions akin to the architecture of transaction handling in JBoss Cache
(cf. Fig. 1).

Fig. 6. Pattern Compositions

Aspects A that define the behavior of invasive patterns specify a pointcut
PCD that allows to modularize crosscutting code that triggers a pattern, and
define a source advice and a target advice executed respectively on the source
and target groups of a pattern. Advice can be parametrized by source hosts H

and bound values (see args below). An advice is a standard block for code, but
a source advice can call the matched base call with the proceed keyword. Oth-
erwise, the base call triggers the aspect but the execution of the corresponding
base method is skipped. When a sync annotation is used to qualify target ad-
vice, the base program execution on source hosts is not resumed before the end
of the target advice. The default behavior is asynchronous execution.

We consider pointcut definitions that, for presentation purposes, are essen-
tially restricted to matching of method call joinpoints, may extract target objects
with target and arguments of calls with args and use logical compositions of
pointcuts. Following the paradigm of stateful pointcuts [13, 6] (and unlike As-
pectJ [4, 19]) pointcuts may match sequences (non-terminal Seq) of calls in the
base program execution. We omit the syntax of sequences for now, but they are
basically defined in terms of a finite-state automaton by declaring its states and
by labelling state transitions with pointcuts.

Let us consider a small example. The aspect in Figure 7 profiles session
creation. When the method login is called the local advice performs it (through
a call to proceed()) and the target advice increments the integer counter defined
within the aspect. This aspect can be applied using patternSeq to two hosts so
that sessions on the first host are counted on the second.



1 aspet Profiling {
2 int sessions=0;
3 around(): all(* *.login()) { proeed(); } { sessions++; }
4 }

Fig. 7. A Session Profiling Aspect

4 Implementation

In order to implement the pattern language presented in the previous section,
support for three main mechanisms is necessary: (i) aspects providing a modular
abstraction for invasive access on the source hosts and triggering activities on
target hosts, (ii) flexible means for synchronization within individual patterns
and between consecutive pattern executions, and (iii) the concise definition of
the communication topologies of patterns.

Mainstream sequential AOP languages, in particular AspectJ [19], do not
fit well these requirements because they do not include any specific support for
distribution and concurrency and are therefore subject to well-known deficiencies
if used for the modularization of distribution concerns (as exposed, e.g., by Soares
et al. [22]). Concretely, with regard to invasive patterns such aspect languages
would require to split the definition of patterns into different, at the application-
level unrelated aspects that have to be manually deployed on different hosts.

We have implemented invasive patterns using a recent approach to AOP
for distributed applications, Aspects with Explicit Distribution (AWED) [6, 5],
which provides direct support for most of the necessary features and allows to
accommodate the remaining ones based on its native abstractions. The AWED
language has been designed as an aspect language for the modularization of
crosscutting concerns in distributed systems. In general terms, AWED allows to
define pointcuts that match sequences of execution events on different hosts in a
distributed systems that trigger advice that is executed on potentially different
hosts.

Remote pointcut

on(localhost)

o
n
(
j
p
h
o
s
t
)

on(123.34.7.9)

on(group1)

  

Fig. 8. Remote pointcuts and advice in AWED



Figure 8 illustrates the two main features of the language: remote pointcuts
and advice. Pointcuts essentially allow to match sequences of execution events
that occur on different hosts. Hosts can be referred to using absolute addresses
but can also be defined relative to the host on which an aspect is deployed
(term localhost, in the figure the host colored in gray). Remote advice can be
triggered on other hosts using the on specifier. Besides the host specifications
available for pointcut definitions, advice execution can also be specified to take
place on the host where the pointcut has been matched (term jphost). Pointcuts
and remote advice execution may depend on explicitly defined groups of hosts.
In pointcuts, such groups may limit matching of execution events to sets of hosts;
as to advice executions, groups allow to execute advice on several hosts. Further-
more, AWED allows to execute pieces of advice synchronously or asynchronously
with the execution of the base application and with other aspects.

A farm pattern can be mapped to an AWED aspect having a pointcut ex-
pression as

call(* *.login()) && host(”sources”) && on(”targets”),

there, the call pointcut matches calls to login method. The pointcut host(”sour-
ces”) matches the join points (events) that appear in a host that belongs to
the sources group. Finally the pointcut on(”targets”) triggers the execution of
the advice in hosts that belong to the targets group. AWED also supports the
Seq pointcut that allows to specify finite-state automata that permit to match
sequences of join points in distributed applications. The sequence constructor
is used to map direct uses of Seq pointcuts of our pattern language and to
implement rendez-vous synchronization in gather-like patterns. We have devel-
oped a formally-defined transformation from our aspect language into executable
AWED programs.⋆⋆ More information on the concrete translation of programs
expressed using the pattern language into AWED programs can be found along
with substantial examples in the following evaluation section.

5 Evaluation

In this section we evaluate our approach by presenting how invasive patterns
can be used to restructure transaction handling and replication in JBoss Cache
We first how to implement these concerns using the proposed pattern language,
thus making explicit their pattern-based structure. We then briefly discuss the
resulting implementation in AWED. Third, we qualitatively evaluate the result-
ing pattern-based implementation by discussion the difference in conciseness of
the original and new implementation. Finally, we briefly discuss first bench-
marking results we have performed by executing the refactored implementation
of JBoss Cache using the current AWED implementation [5].

⋆⋆ Note to reviewers: this formal transformation, that cannot be described here because
of lack of space, is available on request.



5.1 JBoss Cache revisited

Invasive patterns allow to concisely express the essentials of the pattern-based
architecture for transaction handling and replication in JBoss Cache as shown
in Fig. 1. Concretely, we have implemented support for transactions with pes-
simistic locking and the two phase commit protocol using invasive patterns.

1 gCaches = {H1, H2, H3}
2 pipe([h],
3 Atransac,
4 farm(
5 gather(
6 farm([h], Aprepare, syn gCaches-[h]),
7 Apresp,
8 [h]),
9 Acommit,

10 gCaches-[h])
11 );

Fig. 9. Pattern-based definition of the JBoss Cache two phase commit

The corresponding solution is formulated in terms of a nested composition
involving four pattern expressions, see Fig. 9. First, we apply a pipe pattern to
be able to relate the start of transactions with the replication operations, i.e., the
start node and the final replication group, respectively, of Fig. 1. Once a commit
is encountered, a farm pattern is used to farm-out the prepare phase of the two
phase commit protocol. Then, a gather pattern is used to collect the answers
from the involved buddy caches. Finally, after all answers have been received we
use again a farm pattern to distribute the final decision of commit or rollback.
The code in the figure defines this algorithm for three replicated caches. Note
that replication can be triggered from any of the three caches. Once the triggering
node (h in the algorithm) is selected the expression gcaches-h represents the
group of caches without the triggering one.

Figure 10 shows the pattern-defining aspect Aprepare that farms out the
prepare information of the two phase commit protocol. Occurences of calls to the
prepare method are matched and executed (because of the call to proceed in the
source advice). On the target hosts, the target advice executes the prepare phase
followed by the invocation of an agreement or disagreement method, depending
of the answer of the target caches. The aspect takes care of transactions that
perform nested calls in the prepare method using the cflow pointcut construct:
this constructs forbids new replication actions within the dynamic extent of an
open call to the prepare method.

Implementation using AWED. The result of the transformation⋆ ⋆ ⋆ of the pat-
tern program shown in Fig. 9 is a set of AWED aspects that implement the

⋆ ⋆ ⋆ we have applied the transformation manually for this evaluation but its automation
is unproblematic.



1 aspet Aprepare {
2 org.jboss.cache.TreeCache tc = CacheRegistry.getInstance().getCache();
3

4 around(DataStorage d, String txId):
5 all(* PrepareHelper.send(..)) && args(d,s) &&
6 !flow(all(TransactionManager.prepare(..)))
7

8 // Source advice
9 { proeed(); }

10

11 // Target advice
12 { TransactionManager tm = TransactionManager.getInstance();
13 PrepareHelper ph = new PrepareHelper();
14 try{
15 tm.prepare(d, txId, tc);
16 ph.respAgree(txId);
17 } ath(Exception e) {
18 ph.respNotAgree(txId);
19 }
20 }
21 }

Fig. 10. 2PC invasive aspect Aprepare

1 all aspet Aprepare_AWED {
2 org.jboss.cache.TreeCache tc = CacheRegistry.getInstance().getCache();
3

4 Group[] targetGs = {new Group("h1"), new Group("h2"), new Group("h3")};
5

6 pointut sourcePrepareCall(TransactionData d, String txId):
7 seq(init:all(* Atransac.triggerNext()),
8 pcd: all(* PrepareHelper.send(..)));
9

10 pointut targetPrepareCall(Transaction tx)(TransactionData d, String txId):
11 all(* PrepareHelper.send(..));
12

13 // source advice
14 around(TransactionData d, String txId): sourcePrepareCall(d, txId) && host(loalhost) {
15 proeed();
16 }
17

18 // target advice
19 after(TransactionData d, String txId): targetPrepareCall(tx) && on(targetGs) {
20 TransactionManager tm = TransactionManager.getInstance();
21 PrepareHelper ph = new PrepareHelper();
22 try{
23 tm.prepare(Tx.getTransacData(), Tx.getId(), tc);
24 ph.respAgree(txId);
25 } ath(Exception e) { ph.respNotAgree(txId); }
26 void triggerNext() {};
27 }

Fig. 11. 2PC invasive AWED aspect for the creation of the transactional behavior



replication under pessimistic locking. Each aspect of the pattern-based solution
is translated into an AWED aspect that modularizes source and target parts
of a pattern expression. Figure 11 presents the resulting implementation of the
Aprepare pattern-level aspect. In this case the generated source pointcut uses
a sequence to explicitly relate the relevant transaction-related event to the call
send that initiates replication, i.e., farming out of the prepare action. The target
advice executes the prepare method in the target caches and calls an respAgree

or respNotAgree method to yield the answer.

5.2 Qualitative and quantitative evaluation

In Section 2 we have motivated that the current implementation of JBoss Cache
is subject to problems concerning modularization, in particular, scattered and
tangled code for the control of the transaction and replication concerns. Our so-
lution improves the implementation in all those respects. First, each crosscutting
concern is now modeled as an aspect and the choreography and interaction is de-
fined without crosscutting by means of the pattern language (and AWED aspects
on the implementation level). Second, distribution issues, coordination and com-
position of patterns are easily identifiable and modifiable in our solution. These
advantages appear clearly in the Aprepare aspect: the source pointcut clearly
defines the exact context (the sequence of method calls matched in the source
pointcut) required to trigger the replication; furthermore, the related actions
relevant to replication on different hosts are modularized in the aspect. Overall,
our solution facilitates understanding and is easier to extend.

We have measured how our refactored version of JBoss Cache compares quan-
titatively to the plain JBoss Cache solution. For the corresponding experiments,
we have considered transactions with pessimistic locking in JBoss cache. In the
original code, there are more than 2674 LOC in 17 classes related to this concern.
In our solution, the code consists of 532 LOC in 11 well-modularized aspects and
classes: roughly a reduction of 80% of complexity (in terms of LOC). Most to
this reduction is due to the fact that the transaction and communication proto-
col that is scattered and duplicated in switch structures is now re-factorized in
well modularized entities.

6 Related work

As to the best of our knowledge there is no directly related work that considers
extensions to standard communication and computation patterns to accommo-
date crosscutting data accesses using AOP techniques. However, there are many
approaches that are related in a weaker sense, in particular, approaches that use
AOP for support for pattern implementations, sequential AOP systems that have
been used with distributed infrastructures and more generally pattern-based ap-
proaches in distributed systems. We consider these groups of approaches in the
following.



There have been several recent articles on support for the implementation
of patterns using AOP. Hannemann and Kiczales in [16], in particular, show
that several quality attributes, such as locality of definition and code reusability,
of GoF pattern implementations can be improved through usage of AspectJ.
Technically, these improvements are achieved by representing some roles in the
pattern more concisely using AO abstractions. This is quite a different endeavor
from ours that focuses on AOP as a support technology for the definition of
an extended notion of patterns. However, the results on sequential pattern im-
plementations using AOP should have analogues for distributed patterns and
should be applicable to some extent to the invasive patterns we advocate.

A number of approaches have been put forward that use sequential AOP
systems like AspectJ for the modularization of crosscutting functionalities in
distributed and concurrent applications. These approaches — such as Eric Tan-
ter’s work on ReflexD [25], recent work on implementations of concurrency op-
erators [11] and the approach of Concurrent Event-Based AOP [12] — while in
principle be able to express invasive patterns as we have proposed, can only do
so by modularizing crosscutting functionalities using separate aspects for each
node in a distributed system. Our approach, through its pattern language but
also on the implementation level through transformation into AWED, is much
more declarative by directly expressing distribution-relevant relationships within
single aspects, thus resulting in more concise programs that facilitate program
understanding.

In the domain of distributed applications, several pattern catalogues have
been proposed [7, 20, 2]. Such patterns are particularly widespread in component-
based systems, e.g., the CORBA and J2EE platforms [8, 2]. These component
systems provide communication and concurrency mechanisms that are used to
implement patterns, e.g., for the implementation of asynchronous broadcast ser-
vices. However, these programming abstractions are not made explicit in the
architectural description that defines the interconnection properties and, in con-
trast to our approach, no explicit means for the embedding of pattern-like inter-
connection structures in crosscutting contexts is provided.

In the more specific domain of (massively) parallel applications architectural
and programming patterns are also quite popular. Much work has been done, for
instance, on so-called skeletons following Cole’s seminal work [9]. Recent work
has focused on the application of such pattern-based parallelism to larger-scale
imperative applications (see, e.g., [24, 21]). Most of these approaches essentially
rely on an underlying regular communication topology and use of a homogeneous
synchronization model, two properties that do not hold for the applications we
are targeting. Furthermore, crosscutting accesses to execution state on which
pattern applications are not addressed explicitly in such approaches.

Finally, several authors have proposed configurable frameworks to address the
implementation of complex communication protocols by composition of simpler
protocol entities (see, e.g., [26]). However such approaches address protocol
composition at a much lower level of abstraction (e.g., TCP, UDP connections)
than we consider.



7 Conclusion and future work

Software patterns have proven a versatile tool for program development. They
facilitate application development and maintenance by raising the abstraction
level of descriptions for software artifacts. Patterns have been very successful
for sequential object-oriented applications, as well as for massively parallel algo-
rithms. However, pattern-based approaches have been much less successful in the
domain of distributed programming that are defined on irregular topologies and
subject to inhomogeneous synchronization requirements. In this papers we have
identified a major reason for the difficulty in applying programming patterns
to distributed applications: applications of such patterns frequently depend on
information that is not locally available where the pattern is to be applied.

In this paper we have proposed a solution: invasive patterns. Such patterns
provide well-known computation and communication patterns (e.g., pipe, farm
and gather) but also offer a built-in abstraction based on AOP for access to
non-local state. We have motivated our approach in the context of JBoss Cache,
a real-world infrastructure for transactional replicated caching. We have intro-
duced a language for defining and composing invasive patterns that has been
implemented by a translation into AWED, a system for explicitly distributed
AOP. Finally, we have evaluated our approach qualitatively and quantitatively
by presenting a non-trivial pattern-based refactoring of parts of JBoss Cache.

Our proposal provides a solid basis for numerous future work. First, invasive

patterns currently support static only topologies, but AWED supports groups of
hosts that evolve dynamically. Our language could easily be extended to benefit
from this mechanism. Second, our semantics is a simple translation to AWED so
it offers many optimization opportunities (e.g., aspects deployment on specific
hosts, pattern composition specialization). Finally, patterns raise abstraction
level of software and are prime candidates for formal methods (properties to
be analyzed include communication protocol compliance, absence of deadlock,
topology invariants, fault tolerance).
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